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We consider the transport of a tracer substance in Poiseuille flow through a pipe
lined with a thin, fixed wall layer in which the tracer is soluble. A formal solution
is given for the variation of concentration with time at a fixed downstream position
following an initial release of tracer. Asymptotic approximations are derived assuming
that: (i) the Péclet number is large; (ii) the time scale for diffusion across the wall
layer is much larger than that for diffusion across the fluid phase and (iii) the
dimensionless distance downstream of the point of release, z, is large. This means that
the transverse concentration variation is small within the fluid phase, so that transport
is dominated by the exchange of tracer between the phases and radial diffusion within
the wall layer. The character of the concentration transient is found to be determined
by two dimensionless numbers, an absorption parameter κ and an effective wall
layer thickness ν (both rescaled to take account of the ratio of diffusivities in the two
phases); by assumption (ii), ν is large. Several different regimes are possible, according
to the values of κ, ν and z. At sufficiently large distances, a Gaussian approximation,
analogous to Taylor’s solution, is applicable. At intermediate distances, provided
κ is not too large, a highly skewed transient is predicted. If κ is small, there exists
another region further upstream where the effect of the wall is negligible, and Taylor’s
Gaussian approximation applies. More complicated behaviour occurs in the zones
of transition between these three regions. The behaviour described is expected to be
typical of a range of similar systems. In particular, it may be shown that the basic
form of the skewed approximation is insensitive to the geometry of the system, and
also applies when the Péclet number is of order unity.

1. Introduction
In this paper we consider the transport of a tracer substance in a two-phase system

consisting of a flowing phase, where both advection and diffusion occur, and a fixed
phase, in which the tracer moves by diffusion alone. Systems of this general type
are of common occurrence, and their study has been motivated by a wide range of
applications. For example, in chemical engineering, theoretical descriptions have been
sought for the process of gas chromatography in coated tubes and other systems
(e.g. Westhaver 1942; Golay 1958). Biological applications have also been prominent,
and include gas transport in the microcirculation (e.g. Lenhoff & Lightfoot 1984)
and the conducting airways (e.g. Davidson & Schroter 1983). More generally, such
systems have been treated as models for the effects of regions of slow flow on shear
dispersion, such as the viscous sub-layer in turbulent flow (e.g. Chatwin 1973) and
‘dead zones’ in rivers (e.g. Purnama 1988).
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Transport in such systems, containing both a flowing and a fixed phase, is essentially
analogous to the shear dispersion process considered by Taylor (1953), in which,
sufficiently long after the release of a tracer substance, the combined effect of diffusive
radial movement and the radial variation of velocity in Poiseuille flow is equivalent
to an enhancement of axial diffusion. As a result, the concentration distribution may
eventually be described approximately by a Gaussian function of axial distance. The
rate of change of the mean of this Gaussian is equal to the average fluid velocity,
and half of the rate of change of its variance gives the effective axial diffusivity, or
dispersion coefficient. In a system containing two phases, the diffusive movement of
the tracer, not only within the fluid but also between the phases, results in a similar
enhancement of axial diffusivity, which is potentially even greater than that in a single
phase. In fact, this effect was studied theoretically in a two-phase system (Poiseuille
flow through a pipe lined with a thin, highly absorbent layer) by Westhaver (1942),
who calculated the dispersion coefficient for this case a decade before Taylor’s work.
(In a related problem, the same author also anticipated (in 1947) Taylor’s calculation
of the dispersion coefficient for Poiseuille flow in the absence of a wall layer.) Golay
(1958) and Aris (1959) later generalized Westhaver’s result to a wider class of tubular
systems. Since then, the problem of determining the dispersion coefficient has been
formulated for a very general class of periodic porous media, including those in which
diffusion within the fixed phase is important (Brenner & Adler 1982).

In the two-phase system, just as in Taylor’s problem, the concentration distribution
becomes approximately Gaussian at sufficiently large times. This is true whether
we consider the axial distribution of concentration at a fixed time, or its temporal
variation at a fixed position. However, dispersion becomes fully developed only after
there has been time for tracer to diffuse over the whole cross-section of the system.
In Taylor dispersion, the tracer distribution at times earlier than this is known to
be markedly non-Gaussian (see e.g. Phillips & Kaye 1996, 1997), and this may be
important for transport through short tubes, or at very high flow rates. Similarly, in
the two-phase system the Gaussian concentration distribution does not become fully
developed until tracer has had time to diffuse across the fixed, as well as the fluid
phase. In the present work, where diffusion across the fixed phase is assumed to take
much longer than that across the fluid, the non-Gaussian stage in the development
of shear dispersion may persist for a significant time.

The most popular technique which has been used to study dispersion in two-phase
systems is a natural extension of the formulations of Golay (1958) and Aris (1959),
who calculated the fully developed dispersion coefficient by considering the rate of
change of the axial variance of the tracer distribution. Accordingly, several workers
have characterized the development of dispersion, and the influence of exchange
between phases, in terms of the axial moments of the tracer distribution as functions
of time. For example, Chatwin (1973) considered the axial variance and its time-
derivatives for a two-phase system intended to model the effect of the viscous sub-layer
on dispersion. Reis et al. (1979) considered dispersive transport through a column
packed with permeable spheres, using the method of Gill & Sankarasubramanian
(1970), in which an effective transport equation is formulated in terms of a sequence
of time-varying effective transport coefficients, related to the rates of change of the
axial moments. Higher-order moments at large times (as far as the kurtosis of the
concentration distribution) were calculated by Purnama (1988), for a general model
of the influence of dead zones on dispersion in streams. Davidson & Schroter (1983)
calculated numerically effective transport coefficients defined in terms of the time-
derivatives of the axial mean and variance of concentration in the fluid, for the same
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two-phase system considered in the present work, namely Poiseuille flow through a
pipe lined with a wall layer, within which the tracer may diffuse. A more analytic
approach to the same problem was later adopted by Phillips, Kaye & Robinson (1995).
However, as they pointed out, in the long period before dispersion is fully developed,
when the concentration distribution is far from being Gaussian, the moments give
little information about the actual form of the concentration profile. Instead, they
reflect the character of the long, gradually decaying tail of the distribution, which
results from the delay of tracer transport by absorption in the wall layer.

An alternative to the calculation of moments, popular in the chemical engineering
literature, is to consider a simpler, one-dimensional model problem, in which average
concentrations and effective velocity and dispersion coefficients are assigned to each
phase separately, and the rate of exchange between phases is assumed to depend
linearly on the local average concentrations. This simplification allows further analytic
progress to be made in investigating the role of exchange in modifying dispersive
transport (see e.g. Lenhoff & Lightfoot 1984). Such an approach may be particularly
useful if resistance to exchange between the phases is more important than diffusive
resistance within the phases. Similarly, the formulation of Balakotaiah & Chang
(1995), which resolves the transverse concentration distribution within the fluid,
but employs an averaged concentration in the wall layer, is appropriate if diffusive
resistance within the fluid is the limiting factor. However, for the system considered in
the present work, diffusive resistance within the wall layer is high, and the consequent
radial non-uniformity of concentration plays a dominant role.

More closely related to the present work is the study of Young (1988), who
formulated a model problem in which the tracer concentration within a pipe is
described by an one-dimensional, averaged equation, and there is diffusive exchange
with stagnant side branches, within which the concentration distribution is non-
uniform. Young calculated exactly the axial moments of the tracer distribution as
functions of time, laying stress on their ‘non-diffusive’ growth at times before the
full development of shear dispersion. When, in Young’s notation, ∆� 1, his model
becomes mathematically equivalent to the present one at sufficiently large distances
(namely in the intermediate region treated in § 3.1, and further downstream), with
the stagnant side-branches fulfilling the same role as our wall layer. In this regime,
there is a balance between axial convection in the pipe and transverse diffusion in
the wall layer (or side branches). Although Young did not calculate the concentration
distribution within the pipe, he gave an approximate solution for the concentration
within the side branches (his equation (3.17)). At leading order, in the main part of the
temporal range, this solution represents a radially integrated version of the expression
(3.2) for tracer concentration in the wall layer, derived below. (The temporal range
of validity of Young’s solution is slightly more limited than that of (3.2), because in
deriving it he neglected an additional term of the governing equation, which requires
t� κz3/2 in our notation.)

Finally, for the system considered in this paper, concentration transients have
been found by direct numerical calculation (Shankar & Lenhoff 1991). However, in
contrast to the present work, these calculations treat cases in which the time required
for diffusion across the wall layer is comparable with, or smaller than, that for
diffusion across the fluid phase, so comparison with the present results is not possible.

In contrast to previous work, particularly methods based on the calculation of
spatial moments, our approach in this paper is to derive asymptotic approximations
for the tracer concentration distribution, and to work in terms of the temporal
variation of concentration at a fixed position, rather than the axial variation at
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a fixed time. The method, in which approximations for the Laplace transform of
the concentration field are employed, is closely related to that used in our previous
investigations of the development of Taylor dispersion (Phillips & Kaye 1996, 1997).
To simplify the mathematical details, we assume that the Péclet number, expressing
the importance of advection relative to (axial) diffusion, is very large, and that the
wall layer is sufficiently thin that its curvature may be ignored. Furthermore, we
assume that the diffusivity within the wall layer is much smaller than that in the fluid
phase, and that as a result the time scale for diffusion across the wall layer is much
larger than that across the fluid. We restrict our attention to distances sufficiently
large that the radial tracer distribution within the fluid is nearly uniform during the
main part of the concentration transient.

In summary, the outline of the paper is as follows. In § 2 the problem is formu-
lated mathematically, an exact formal solution is given, and the general procedure
for obtaining approximations is outlined. In § 3, we derive approximations for the
concentration transient applicable in three different regions, as determined by the
downstream distance of the point of observation from the point where tracer is
released: a skewed approximation valid at intermediate distances, and Gaussian dis-
tributions appropriate further upstream and downstream. We also give transitional
forms appropriate near the boundaries between these regions. The relationship of
these approximations is illustrated by numerical results in § 4, and their applicability
is discussed in § 5.

2. Mathematical formulation
2.1. Formal solution

We consider transport of a tracer substance through a system consisting of a circular
pipe of radius a surrounded by an annular wall layer of thickness h. The pipe contains
flowing fluid, through which tracer is transported by both advection and diffusion,
but the wall layer is stationary, so that only diffusion acts within it. The tracer is
assumed to be introduced instantaneously at some point within the fluid, and the
Green’s function solution for the subsequent concentration distribution is sought.
Throughout this paper, the fluid will be assumed to move with a fully developed
(parabolic) Poiseuille flow profile. If tracer concentration is denoted by C , time by
T , axial distance by Z , transverse position by R, the axial velocity by V (R) and the
diffusivities by D and Dw in the fluid and the wall layer respectively, the governing
equations are

∂C

∂T
+ V (R)

∂C

∂Z
= D

(
∇2
RC +

∂2C

∂Z2

)
for R < a,

∂C

∂T
= Dw

(
∇2
RC +

∂2C

∂Z2

)
for a < R < a+ h,

 (2.1)

in which ∇R represents the transverse component of the differential operator ∇.
The boundary conditions at the interface between the two phases are

λ
∂C

∂R

∣∣∣
R=a+

=
∂C

∂R

∣∣∣
R=a−

, C|R=a+ = βC|R=a−; (2.2)

in the first, which represents the continuity of normal flux, λ is defined as the ratio
of diffusivities in the wall layer and fluid, Dw/D; in the second, it is assumed that the
ratio of the tracer concentrations immediately adjacent to the interface is equal to β,
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its equilibrium value (that is, there is no local resistance to exchange of the tracer
across the interface). It is also assumed that the outer boundary of the wall layer is
impermeable to the tracer, so that

∂C

∂R

∣∣∣
R=a+h

= 0. (2.3)

(The general solution presented in this subsection would be equally applicable for
the alternative condition C = 0 at R = a+ h, representing perfect absorption at the
outer boundary, or indeed, for any linear, homogeneous condition on C and ∂C/∂R;
cf. Phillips et al. 1995.)

In order to express the problem in dimensionless form, we denote by Vm the
average value of the axial velocity over the cross-section. Then the strength of
advection relative to axial diffusion is expressed by the Péclet number

P = Vma/D. (2.4)

Dimensionless variables are defined by

c = πM−1Pa3C, r = a−1R, z = P−1a−1Z, t = a−2DT . (2.5)

The definition of c, in whichM denotes the total mass of tracer present in the system,
results in a convenient normalization of the dimensionless problem. The resulting
dimensionless governing equation is

∂c

∂t
+ v(r)

∂c

∂z
= ∇2

rc+ P−2 ∂
2c

∂z2
for r < 1,

∂c

∂t
= λ

(
∇2
rc+ P−2 ∂

2c

∂z2

)
for 1 < r < 1 + ε,

 (2.6)

in which v(r) = V (R)/Vm = 2(1− r2) is the dimensionless axial fluid velocity, and
ε = h/a is the dimensionless wall layer thickness. The conditions on c at the interface
and at the outer boundary of the wall layer are identical in form to (2.2), (2.3).

Since the problem is linear, the solution corresponding to an arbitrary initial
distribution of tracer within the fluid phase may be expressed in terms of a Green’s
function G(r, z, t; r0), satisfying the initial condition

G(r, z, 0; r0) = πδ(r − r0)δ(z), (2.7)

in which δ is the Dirac delta function, so that the tracer is assumed to be concen-
trated at the transverse position r0 and at z = 0 (without loss of generality); the
normalisation is the same as in our earlier treatment (Phillips & Kaye 1996).

The formulation above includes the effects of axial molecular diffusion, and is
therefore valid for arbitrary values of the Péclet number P . If the diffusivity were
the same in the wall layer and the fluid, it would be possible to express the finite-
P solution for c in terms of the corresponding solution in the absence of axial
molecular diffusion (that is, the infinite-P solution), simply by convolving the latter
with a Gaussian function of z (see, e.g., Phillips & Kaye 1996). But because the
diffusivity differs between the two phases, this is not the case here. In principle it
would be straightforward to retain the effects of finite P in a derivation similar to
that below, at the cost of increased algebraic complexity. However, for the sake of
simplicity, in the remainder of this paper we confine ourselves to the limit P →∞,
so that the terms representing axial diffusivity in (2.6) may be omitted. (In Appendix
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B, §B.1, it is demonstrated that one of the approximations derived below, (3.1), is
insensitive to this assumption.)

A formal solution to the problem may be obtained by steps exactly similar to
those leading to (4.2) of Phillips & Kaye (1996). In summary, a Fourier transform
(variable k) with respect to z and a Laplace transform (variable s) with respect to
t are applied. The transformed solution has poles in the k-plane, and its behaviour
in their neighbourhood is related to an eigenvalue problem (given below). By using
Green’s theorem, the residues at these poles may be expressed in terms of integrals
of the eigenfunctions, allowing the inversion of the Fourier transform, which gives

G(r, z, t; r0) =
1

2πi

∞∑
n=0

∫
Cn
Fn(r0, r; s) exp(st− `n(s)z) ds, (2.8)

in which

Fn(r0, r; s) =
πfn(r0; s)fn(r; s)∫

r′61

v(r′)fn(r
′; s)2 dA′

, (2.9)

where the Cn are suitably chosen contours of integration, r′ is a dummy integration
variable and dA′ the corresponding area differential, and the eigenvalues `n(s) and
eigenfunctions fn(r; s) satisfy the equations

∇2
rfn =

(
s− 2`n(1− r2)

)
fn for r < 1, (2.10a)

∇2
rfn = λ−1sfn for 1 < r < 1 + ε, (2.10b)

again subject to conditions at r = 1 and r = 1 + ε identical in form to (2.2), (2.3).
Without loss of generality, we may fix the normalization of the eigenfunctions by
specifying fn = 1 at r = 0.

In principle, the equations just given constitute an exact solution for the Green’s
function G. In general, its evaluation would require the eigenfunctions fn, and the
integrals in (2.8) and (2.9), to be computed numerically. However, simpler approxi-
mations for the concentration distribution, valid for specified ranges of the governing
parameters, may be derived by finding suitable asymptotic approximations for the
eigenfunctions and eigenvalues. We have previously considered the case where the
wall layer is absent (i.e. the development of Taylor dispersion), and have applied such
a strategy to derive two approximations for G: the first valid when the downstream
distance z is large (Phillips & Kaye 1996), and the second in the very early stages
of the transient (Phillips & Kaye 1997). In the present work, we derive large-z ap-
proximations corresponding to the former of these. As in our previous studies, the
emphasis will be on the temporal variation of concentration which would be observed
at a fixed axial position.

2.2. Simplifying assumptions

In order to simplify the problem, we assume that ε = h/a is small, so that the wall
layer is thin relative to the radius of the pipe, and its curvature may be ignored. (Like
the assumption that P is very large, discussed above, this simplifies the manipulations
involved, but does not change the structure of the solution. In Appendix B it is
demonstrated that the approximation (3.1) derived below remains valid for larger
values of ε.) The governing equation (2.10b) for fn in the wall layer, subject to an
outer boundary condition of the form (2.3), may be solved explicitly and, with the
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assumption that ε is small, the solution takes the form

fn(r; s) = An(s) cosh(λ−1/2s1/2(1 + ε− r)) for 1 < r < 1 + ε, (2.11)

for some function An(s). (Note that the condition that the solution fn decays, rather
than grows, with distance into the wall layer requires that Re s1/2 > 0, so that, in the
definition of s1/2, the branch cut must lie along the negative real axis.) The function
An(s) may be eliminated by combining this solution for fn in the wall layer with
the dimensionless form of the conditions (2.2) at the interface. Thus we obtain the
condition at the boundary of the fluid phase:

∂fn

∂r
= −κ′s1/2fn at r = 1−, where κ′ = κ tanh(νs1/2), (2.12)

in which the absorption parameter κ and the effective wall layer thickness ν are the
two dimensionless groups through which the parameters β, ε and λ influence the
solution, defined by

κ = βλ1/2, ν = ελ−1/2. (2.13)

These parameters represent versions of the partition coefficient β and wall layer thick-
ness ε respectively, rescaled to take account of the difference between the diffusivities
in the two phases.

The second simplifying assumption is that the second of these parameters, ν, is
large. This implies that the time scale for diffusion across the wall layer is much
larger than that for diffusion across the fluid phase. As a result, there are two distinct
stages in the development of dispersion: in the first, for smaller distances, the radial
concentration distribution within the fluid is non-uniform but tracer penetration into
the wall layer is very small; in the second, for larger distances, diffusion within the
wall layer in general has a dominant effect, but the radial tracer distribution within
the fluid is nearly uniform. (Note that this simplification, unlike the assumptions that
P is large and ε is small, is essential in making analytic progress possible. If ν were
of order unity, it would be necessary to solve the eigenvalue problem numerically in
order to obtain non-trivial approximations.)

We seek approximate expressions for the Green’s function G, appropriate when
z is large, corresponding to the second stage of the development of dispersion, just
discussed. Our previous solution for Taylor dispersion suggests that in this regime
the leading (n = 0) term of the series in (2.8) will be dominant, and may be evaluated
approximately by solving the eigenvalue problem (2.10a), (2.12) for f0 and `0, for
small values of s. To obtain such a solution, assume initially that s lies within the
range ν−2 <∼ s� 1. This implies that νs1/2 is comparable with unity or larger, so that
the hyperbolic tangent in (2.12), and therefore the coefficient κ′, may be treated as
fixed. The resulting solution is of the form

f0(r; s) = 1 + O(s1/2), `0(s) = m1s
1/2 + m2s+ m3s

3/2 + m4s
2 + O(s5/2), (2.14)

in which the coefficients mj depend on s only through κ′. By straightforward substi-
tution of these series into (2.10a) and (2.12), the first four coefficients are found to
be

m1 = 2κ′, m2 = 1− 11
12
κ′

2
, m3 = − 1

4
κ′ + 251

720
κ′

3
,

m4 = − 1
48

+ 11
96
κ′

2 − 5603
53760

κ′
4
. (2.15)

Note that this series solution remains valid even if κ′ is large, provided that κ′s1/2 � 1.
In this approximation, f0 is approximately uniform within the fluid phase. The
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physical implications of this are clear by inspection of (2.8), (2.9): at the leading
order, during the main part of the transient, the measured concentration is radially
uniform in the fluid phase (though not in the wall layer), and is also independent of
the transverse position in the fluid where the tracer is released. As discussed below, at
sufficiently large distances, dispersion becomes fully developed, and the concentration
distribution becomes nearly uniform, even within the wall layer, during the main
part of the transient. Mathematically, this regime corresponds to values of s much
smaller than ν−2. In this case an alternative series solution is obtained by expanding
tanh(νs1/2) in powers of s1/2 (see § 3.3). (Note that, however large the downstream
distance, at very early and at very late times the solution for the main part of
the transient, corresponding to small values of s, breaks down, and the concentration
distribution becomes radially non-uniform. With the assumption that z � 1, however,
the tracer concentration is extremely small whenever this occurs.)

Provided that the integrals in (2.8), (2.9) are dominated by contributions from values
of s satisfying both s� 1 and κ′s1/2 � 1, we see from (2.14) that f0 is approximately
uniform within the fluid phase, so that the function F0 defined by (2.9) may be
replaced by unity. Thus we obtain

G(r, z, t; r0) ∼
1

2πi

∫
C0

exp(st− `0(s)z) ds. (2.16)

The omitted contributions from higher (n > 1) modes are expected to be exponentially
smaller in z than the leading term; the coefficient multiplying z in the exponent
depends both on the parameters κ and ν, and on the value of t (cf. the discussion
of the κ = 0 case in Phillips & Kaye 1996, Appendix B). The errors arising from the
f0 ∼ 1 approximation in the leading term are algebraically small in z.

It will be convenient in the remainder of the paper to define a new time variable,
namely

∆t = t− z, (2.17)

that is, the time elapsed since z, which is the average time taken for the flowing fluid
to reach the observer from the point where tracer is introduced. From (2.14), the
exponent in (2.16) is given by

st− `0(s)z = s∆t− 2κ′zs1/2 + 11
12
κ′

2
zs+ 1

48
zs2 + O(zs3, κ′zs3/2, κ′

3
zs3/2) (2.18)

when s, κ′s1/2 � 1. The character of the solution is determined by which of the terms
in this equation are significant, and this in turn depends upon the sizes of κ, z and
∆t, relative to one another and to ν.

In considering the main part of the concentration transient at intermediate dis-
tances, it will be useful to employ a rescaled version of s, defined by σ = κ2z2s. When
σ is of order unity, we find that the significant contributions to the exponent are
given by

st− `0(s)z =
∆t

κ2z2
σ − 2σ1/2 tanh

( ν
κz
σ1/2

)
+

σ2

48κ4z3
+ O

(
1

z
,

1

κ2z2
,

1

κ6z5

)
, (2.19)

when ∆t is comparable with κ2z2, provided that κz, z � 1. (Note that the κ′2zs term
in (2.18) is of order z−1 with this scaling.)
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Fully developed region

Intermediate
region

Taylor region

ν4

1
ν–3 1 ν

κ

z z ~ κ –4/3

z ~ κ
–2

z ~ κ –1
m

Figure 1. Schematic illustration of the regions of applicability of different approximations for
the tracer concentration transient in the (κ, z)-plane. The character of the transient is determined
by the size of z relative to the values zu = max(1, κ−4/3) and zd = κ−1ν. The Taylor region, for
which 1� z � min(zu, ν

4) (for κ� 1), is treated in § 3.2. The intermediate region, for which
zu � z � zd (for ν−3 � κ� ν), is treated in § 3.1. (In the left-hand part of this region, where
z � κ−2 (for ν−3 � κ� 1), the early approximation (3.3) is valid.) The fully developed region, for
which z � min(zd, ν

4) (for κ� ν) and z � 1 (for κ� ν), is treated in § 3.3.

3. Asymptotic approximations for the concentration transient
All the approximations considered in this paper require that the dimensionless

downstream distance z be large. In addition, for a given value of κ in the range
ν−3 � κ� ν, the character of the transient is found to depend on the size of z
relative to the values zu = max(1, κ−4/3) and zd = κ−1ν. The regions of (κ, z)-space
defined by these criteria are shown schematically in figure 1. Within each of the
regions (and asymptotically far from their boundaries), the form of the main part of
the concentration transient is particularly simple (see (3.1), (3.8) and (3.12) below).
Near the boundaries between them, the behaviour is more complicated, reflecting the
transitions between the different regimes. In addition, in each case the approximate
solution breaks down at both short and long times. Table 1 (§ 5) shows the ranges of
temporal validity of the approximate solutions presented in this section.

3.1. The intermediate region

Initially, we consider the intermediate range of axial distances defined by zu � z � zd.
The mathematical details of the evaluation of the integral in (2.16), using the series
expansion (2.18), are given in Appendix A.

The main part of the transient corresponds to values of ∆t comparable with
κ2z2. The first two terms of (2.18) are dominant, with the hyperbolic tangent in the
definition of κ′ approximately equal to unity. In physical terms, this means that the
character of the transient is determined by tracer exchange with a thin region of the
wall layer adjacent to the interface. The flow profile and the presence of the outer
boundary of the wall layer do not affect the solution at the leading order. The main
part of the concentration transient is described by the skewed approximation

G(r, z, t; r0) ∼
κz

π1/2∆t3/2
exp

(
− κ

2z2

∆t

)
for ∆t > 0 (3.1)

(Appendix A, §A.1). In this approximation it is straightforward to obtain the cor-
responding solution for the tracer concentration within the wall layer. When r lies
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within the wall layer (but the point of release r0 is in the fluid phase, as above), we
find that

G(r, z, t; r0) ∼
β(κz + 1

2
λ−1/2[r − 1])

π1/2∆t3/2
exp

(
−

(κz + 1
2
λ−1/2[r − 1])2

∆t

)
for ∆t > 0.

(3.2)

(This approximation breaks down in the thin outermost region of the wall layer,
where the distance from the outer boundary, relative to the thickness of the layer, is
comparable with the small quantity κz/ν. The concentration is exponentially small in
this region.) This solution can trivially be integrated with respect to r, to obtain the
total quantity of tracer within the wall layer as a function of z and t; this integrated
result is equal, at leading order, to Young’s (1988) equation (3.17), which was derived
using a simplified model.

The approximations just given are not uniformly asymptotic: in Appendix A,
their range of temporal validity is shown to be max(κ2z3/2, κz5/4)� ∆t� ν2. The
behaviour at earlier and later times is considered in the remainder of this subsection.
In the approximation of (3.1) and (3.2), the concentration is zero for values of t less
than z. In fact, the first arrival of tracer corresponds to advection with the peak
velocity at the centreline, and occurs at t = 1

2
z. For values of ∆t comparable with

max(κ2z3/2, κz5/4) or smaller, (3.1) loses its validity, although at these early times the
tracer concentration is exponentially small. The nature of the transient at earlier times
depends on the values of κ and z, but a simple approximation may be found if the
additional condition z � κ−2 is imposed (this is possible if κ� 1; the corresponding
region of (κ, z)-space is illustrated schematically in figure 1). As shown in Appendix
A, §A.2, in this case the first, second and fourth terms of (2.18) are significant.
Physically, this means that in addition to exchange with a thin region of the wall
layer, the influence of the non-uniform velocity profile is important. The resulting
approximation is

G(r, z, t; r0) ∼
1[

π
(

1
12

+ α−3
)
z
]1/2 exp

(
−κ4/3z( 1

48
α4 + α)

)
, (3.3)

where α satisfies the cubic equation

1
24
α3 +

∆t

κ2/3z
α− 1 = 0. (3.4)

This approximation is valid (provided that z � κ−2) for positive values of ∆t up to
order κz5/4, and for negative values with |∆t| up to order z2/3. In addition, it is easy
to verify that for larger (positive) values of ∆t, (3.3) tends towards the skewed form
(3.1).

As well as breaking down at small times, the skewed approximation (3.1) behaves
in a clearly unphysical manner at large times, when it predicts a slow, algebraic decay.
As pointed out by Phillips et al. (1995), the consequence is that all the moments of
the approximation (3.1) (beyond the zeroth) are infinite. In practice, the influence of
the impermeable outer boundary eventually causes absorbed tracer to move back into
the fluid phase more quickly, forcing a faster decay of the concentration tail. If this is
taken into account, the temporal moments are seen to be finite, but much larger than
a naive scaling argument based on (3.1) would suggest. In mathematical terms, the
evaluation of the concentration when ∆t is of order ν2 or larger requires the individual
treatment of the singularities of the hyperbolic tangent along the negative real axis
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of the s-plane. The details are given in Appendix A, §A 3, where it is demonstrated
that the contribution of the mth singularity to G is given by (A 9). Thus we obtain

G(r, z, t; r0) ∼ π
( κz

ν3∆t

)1/2

e−3κz/ν

∞∑
m=0

(2m+ 1)I1(am)e−bm , (3.5)

in which I1 is a modified Bessel function of the first kind, and the arguments am and
bm are given by

am = 2(2m+ 1)π

(
κz∆t

ν3

)1/2

, bm =
(2m+ 1)2π2∆t

4ν2
. (3.6)

Combination of the conditions (A 7) with (A 8) shows that the temporal range of
validity of this approximation is κνz � ∆t� κ−1ν3.

The large-time approximation may be further simplified in parts of this temporal
range, because in the intermediate region κz/ν � 1. Thus, we find that: (i) for ∆t<∼ ν2,
the modified Bessel functions may be replaced by their (linear) small-argument
approximations, and for ∆t� ν2 this shows the series to be a discrete approximation
to the integral form of (3.1), so that this solution joins smoothly on to the skewed
form; (ii) for ∆t� ν2, all terms but the leading one are negligible; (iii) at even
larger times, ∆t� κ−1ν3z−1, the modified Bessel function may be replaced by its
(exponential) large-argument approximation, although by this time the concentration
is extremely small. (Note that at even larger times, when ∆t becomes comparable
with κ−1ν3, the concentration becomes radially non-uniform in the fluid phase, and
the expansion (2.18) is no longer valid.)

3.2. The upstream transition zone and the Taylor region

As well as breaking down at very early times within the intermediate region, (3.1)
loses its validity during the main part of the transient as the boundary z = zu is
approached. In the range 1<∼ κ� ν, this means that the dimensionless downstream
distance z drops to order unity, which implies that there is insufficient time for
radial equilibration of the concentration within the fluid, and the expansion (2.18) is
not valid. However, for smaller values of κ (ν−3 � z � 1), the upstream boundary
of the intermediate region occurs when z is comparable with κ−4/3 (� 1), and the
expansion remains applicable. This is a zone of transition, in which the character of
the concentration transient changes. It is clear from (2.19) that in this zone, where
κ4/3z is of order unity, the σ2 term becomes important (although – provided κ� ν−3

– the hyperbolic tangent may still be replaced by unity, and the error terms remain
small). Placing the integration contour along the imaginary axis, we therefore obtain

G(r, z, t; r0) ∼
1

πκ2z2

∫ ∞
0

Re

[
exp

{
∆t

κ2z2
σ − 2σ1/2 +

σ2

48κ4z3

} ∣∣∣∣
σ=iu

]
du. (3.7)

The presence of the σ2 term means that in general this integral must be evaluated
numerically. As illustrated by the numerical results in § 4, this solution tends towards
the early approximation (3.3) at small times, and towards the skewed approximation
(3.1) at large times.

If we now move upstream of the transition zone (for ν−3 � κ� 1), to consider
distances such that 1� z � κ−4/3 (see figure 1), the approximation (3.7) simplifies.
The σ2 term in the exponent causes the integrand to decay over the small scale κ2z3/2,
and the σ1/2 term in the exponent becomes negligible. The resulting integral may
be evaluated explicitly using Gradshteyn & Ryzhik (1980, eqn 3.896.4), to give the
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simpler approximation

G(r, z, t; r0) ∼
(

12

πz

)1/2

exp

(
− 12∆t2

z

)
, (3.8)

which is simply the temporal counterpart of Taylor’s Gaussian approximation for the
tracer concentration distribution in the absence of a wall layer. This demonstrates
that, for small values of the absorption parameter κ, there exists a range of distances
over which Taylor dispersion has developed, but the influence of the wall layer on the
main part of the concentration transient may be neglected. (In fact, it may be shown
directly from (2.18) that (3.8) is also valid for extremely small values of κ (<∼ ν−3),
provided that z � ν4; see figure 1.)

The Gaussian approximation (3.8) breaks down at very small times, when either the
s3 or the s1/2 term in (2.18) becomes significant. This corresponds to negative values of
∆t, with |∆t| comparable with min(z2/3, κ−2z−1). At large times the situation is compli-
cated by the presence of the branch cut in the s-plane. In this case the approximation
is found to fail when ∆t becomes comparable with min(z2/3, z1/2| ln(κz3/4)|1/2). If the
logarithmic time-scale is reached first, the Gaussian approximation is supplanted at
large times by the skewed form (3.1).

3.3. The downstream transition zone and the fully developed region

The downstream boundary of the intermediate region, where z becomes comparable
with zd = κ−1ν, is another zone of transition, where the skewed approximation (3.1)
breaks down, because the hyperbolic tangent in (2.19) may no longer be approxi-
mated by unity. Physically, this means that the impermeable condition at the outer
boundary of the wall layer becomes significant. In this zone (which covers the range
ν−3 � κ� ν), the third and error terms in (2.19) remain small compared with unity.
Once again, placing the integration contour along the imaginary axis, we obtain

G(r, z, t; r0) ∼
1

πκ2z2

∫ ∞
0

Re

[
exp

{
∆t

κ2z2
σ − 2σ1/2 tanh

( ν
κz
σ1/2

)} ∣∣∣∣
σ=iu

]
du. (3.9)

In general this integral, like that in (3.7), must be evaluated numerically. As illustrated
by the numerical results in § 4, this solution tends towards the skewed approximation
(3.1) at small times, and towards the late approximation (3.5) at large times.

If we move still further downstream, so that z becomes much larger than zd, the
approximation (3.9) simplifies. In mathematical terms, the argument of the hyperbolic
tangent becomes small, and it is appropriate to expand in powers of σ1/2. We find
that the resulting σ2 term causes the integrand to decay over the scale (κν−1z)3/2, so
that the only significant terms in the exponent are proportional to σ and σ2. Thus,
as in the last subsection, we obtain a simpler Gaussian approximation for the tracer
concentration transient. Physically, the radial tracer distribution has become almost
uniform over both the fluid phase and the wall layer. There has been sufficient distance
for the full development of the analogue of Taylor dispersion in the two-phase system,
resulting in a Gaussian distribution whose mean and variance are both influenced by
the properties of the wall layer.

This Gaussian approximation may also be found from an alternative series solu-
tion of the eigenvalue problem (2.10a), (2.12), applicable for very small values of s
(� min(ν−2, κ−1ν−1)), obtained by expanding tanh in powers of s1/2. This derivation
makes it clear that neither the condition ν−3 � κ� ν nor the assumption that ν
is large is necessary at this stage. For generality, the equations given below do not
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rely on these assumptions (if ν were large, the term proportional to κν would be
negligible). In this manner, we obtain a series approximation for `0(s) in integral
powers of s, which gives

st− `0(s)z = (t−M)s+ 1
2
S2s2 + O(1, κ3ν3, κν5)zs3, (3.10)

where the coefficients M and S 2 are given by

M = (1 + 2κν)z, S2 = ( 1
24

+ 1
2
κν + 11

6
κ2ν2 + 4

3
κν3)z. (3.11)

It is found that, in evaluating the integral (2.16), the error terms in (3.10) are negligible
provided that t−M scales as S , and that z is sufficiently large. The precise condition
on z depends on the value of κ. In the range ν−3 � κ� ν, it is that z � zd. For
smaller values (κ<∼ ν−3), it is sufficient that z � ν4, and for larger values (κ>∼ ν), that
z � 1. The corresponding region of (κ, z)-space is illustrated in figure 1. Thus we
obtain the ‘fully developed’ Gaussian approximation for the Green’s function

G(r, z, t; r0) ∼
1

(2π)1/2S
exp

(
− (t−M)2

2S2

)
. (3.12)

This approximation is the temporal counterpart of the Gaussian axial distribution
found by Golay (1958). The range of temporal validity of this approximation, which
may be determined by considering the size of the neglected terms in (3.10) at the
saddle point, also depends upon the value of κ. For the main part of the region
(ν−3 � κ� ν), the approximation breaks down when |t−M| becomes comparable
with (κν2z)2/3.

Finally, note that the upstream and downstream transitional zones meet at the
tip of the intermediate region, where κ is comparable with ν−3, and z with ν4 (see
figure 1). In this regime, the full expression (2.19) (excluding the error terms) must be
incorporated in an integral similar to (3.7) or (3.9), giving a rather more complicated
result, which once again must be determined numerically.

4. Numerical results
In this section, numerical results are given, to illustrate the relationship between the

simple asymptotic approximations (3.1), (3.8) and (3.12), valid in different regions of
(κ, z)-space, and the transitional forms (3.7) and (3.9), applicable near the boundaries
of these regions (see figure 1). In presenting the results, it will be convenient to use
three rescalings, based on the characteristic concentration and time scales of the three
simple approximations. Note that each of the rescalings preserves the integral of
concentration with respect to time; in physical terms this is proportional to the total
amount of tracer advected past the observation point, which means that the area
under each curve shown in this section is the same (and is equal to unity).

Near the upstream boundary of the intermediate region, there is a transition
between the Taylor Gaussian form, for which the effect of the wall layer is negligible,
and the skewed approximation, for which it is dominant. First, we examine the way
in which the upstream transitional form (3.7) departs from the Taylor Gaussian
approximation (3.8). To illustrate this, it is convenient to use a rescaling based on
the concentration and time scales of the Gaussian, that is, to plot z1/2G against
z−1/2∆t. With this rescaling, the transitional form depends on the single dimensionless
parameter κ4/3z (which, in the transitional zone, expresses the ratio of z to zu), and
tends towards the Gaussian as κ4/3z → 0. In figure 2, this rescaling is employed to
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Figure 2. Graph showing z1/2G plotted against z−1/2∆t, to illustrate the departure of the upstream
transitional form (3.7) from the Taylor Gaussian approximation (3.8), as κ4/3z increases. – – –,
Gaussian approximation; ——, upstream transitional form, for κ4/3z = 10−2, 10−1 and 1

2
, in order

of decreasing peak height; . . . . . . early approximation (3.3); - - - -, skewed approximation (3.1).

plot the Gaussian approximation, and the transitional form for κ4/3z = 10−2, 10−1 and
1
2
. These curves may be thought of as describing the concentration transient either

at successively larger downstream distances, or for larger values of the absorption
parameter κ (implying larger partition coefficients or diffusivities within the wall
layer). The results illustrate the departure of the transient from the Gaussian form,
even for quite small values of κ4/3z, characterized by a substantial reduction in the
peak concentration (by 10% when κ4/3z is about 0.014, and to about two thirds
of the Gaussian value by κ4/3z = 10−1). The temporal location of the peak changes
more gradually, and the main part of the curve retains a fairly ‘Gaussian’ appearance.
However, the decrease in concentration during the main part of the transient is
compensated by the formation of a long, gradually decaying tail, so that the area under
each curve remains equal to unity. Its form is described by the skewed approximation
(3.1), which for the cases shown becomes virtually indistinguishable from the numerical
values beyond z−1/2∆t = 1. The tail accounts for a significant fraction of the area
under the curve, and causes the temporal moments of concentration (beyond the
zeroth) to be infinite. Awareness of this behaviour may be very important in practice,
especially if the presence of noise makes the accurate measurement of concentration
difficult. Also shown in figure 2 is the early approximation (3.3), which in each case
describes the early part of the transient closely, but loses accuracy before the peak is
reached.

While the transitional solution (3.7) departs from the Taylor Gaussian as κ4/3z
increases, it approaches the skewed form given by (3.1). To illustrate this, we use a
rescaling based on the concentration and time scales appropriate in the intermediate
region, that is, we plot κ2z2G against κ−2z−2∆t. This means that the transitional
form again depends only on κ4/3z, and tends towards the skewed approximation as
κ4/3z →∞. In figure 3, this rescaling is used to show results for κ4/3z = 1

5
, 1

2
and

1, together with the skewed approximation and the early approximation (note that
the values of κ4/3z represented here are somewhat larger than those in figure 2).
The limiting process illustrated here is the converse of that shown in figure 2: a
transient with a broadly ‘Gaussian’ appearance becomes more sharply peaked and
less symmetrical, as either the distance z or the absorption parameter κ increases. As



Developing shear dispersion with exchange between phases 209

–2 0 2 4 12

Dt /(κ2 z2)

κ2 z2 G

0

0.05

0.10

0.15

0.25

0.20

6 8 10

Figure 3. Graph showing κ2z2G plotted against κ−2z−2∆t, to illustrate the approach of the up-
stream transitional form (3.7) to the skewed approximation (3.1), as κ4/3z increases. - - - -, skewed
approximation; ——, upstream transitional form, for κ4/3z = 1

5
, 1

2
and 1, in order of increasing peak

height; . . . . . ., early approximation (3.3).
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Figure 4. Graph showing the main part of the transient κ2z2G plotted against κ−2z−2∆t, to illustrate
the departure of the downstream transitional form (3.9) from the skewed approximation (3.1), as
κν−1z increases. - - - -, skewed approximation; ——, downstream transitional form, for κν−1z = 1

3
,

2
3

and 1, in order of increasing peak height.

already seen, the large-time tail agrees closely with the skewed form even for relatively
small values of κ4/3z. Near the beginning of the transient, we see that, as the skewed
form is approached, there is a decrease in the amount of tracer arriving in ∆t < 0,
and a compensatory increase in the height of the peak immediately afterwards. By
about κ4/3z = 0.84 the peak has reached 90% of the value predicted by (3.1).

At the downstream boundary of the intermediate region, a different transition
occurs, between the skewed approximation, for which the influence of the outer
boundary of the wall layer is small, and the fully developed Gaussian form, in which
tracer has equilibrated across the wall layer. In figures 4 and 5, we illustrate the way
in which the transient departs from the skewed form as we move downstream. With
the same rescaling as in figure 3, the downstream transitional form (3.9) depends only
on the dimensionless parameter κν−1z (which expresses the ratio of z to zd), and tends
towards the skewed approximation (3.1) as κν−1z → 0. In figure 4, the main part of
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Figure 5. Logarithmic plot to show the late transient of κ2z2G plotted against κ−2z−2∆t, illustrating
the relationship between the downstream transitional form (3.9) and the skewed approximation
(3.1), for small values of κν−1z. - - - -, skewed approximation; ——, downstream transitional form,
for κν−1z = 1

10
and 1

3
; the latter of these diverges earlier from the skewed approximation; − · − ·,

late approximation (3.5).

the transient is shown for κν−1z = 1
3
, 2

3
and 1. For the smallest value, the computed

curve follows the skewed approximation closely as far as the peak and for some way
beyond it, but thereafter the concentration in the tail rises to as much as twice that
predicted by (3.1). Physically, this is because the impermeable outer boundary of the
wall layer stops the outward diffusion of tracer, causing it to return to the fluid phase
and to reach the point of observation earlier than it would otherwise have done. The
behaviour of the κν−1z = 1

3
curve at larger times is shown in a logarithmic plot in

figure 5. The earlier excess of concentration is compensated by a subsequent fall of
concentration below the value predicted by the skewed approximation. This process
is described quite closely by the late approximation (3.5): thus the influence of the
outer boundary eventually induces an exponential, rather than an algebraic, decay
of the concentration. As a result, the temporal moments of concentration are finite,
although they primarily reflect the characteristics of the tail, rather than the main
part of the transient where the concentration is higher. Also shown in figure 5 is
the transient for the smaller value κν−1z = 1

10
, which behaves similarly, but diverges

from the skewed approximation at a later period. This divergence, and the subsequent
decay, are accurately described by the late approximation (3.5).

Returning to the main part of the transient shown in figure 4, we see that for
larger values of κν−1z, both the rise in concentration above that predicted by (3.1)
and the following decay occur progressively earlier, giving rise first to a pronounced
‘hump’ following the peak, and then to a dramatic increase in the height of the peak,
followed by a prompt decay of concentration. By about κν−1z = 0.73 the peak has
risen to 10% above that predicted by (3.1), although by then the shape of the curve
as a whole is very different.

Finally, we consider the approach of the downstream transitional form (3.9) to the
fully developed Gaussian approximation, which occurs at large distances. Although
the transient approaches the Gaussian form (3.12) at sufficiently large z for any value
of ν, here we restrict our attention to the range ν−3 � κ� ν, which corresponds
to the downstream boundary of the intermediate region. In this range, the variance
of the Gaussian, defined by (3.11), may be approximated by S2 ∼ 4

3
κν3z. Based

on the concentration and time scales of the resulting Gaussian, we plot (κν3z)1/2G
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Figure 6. Graph showing (κν3z)1/2G plotted against (κν3z)−1/2(∆t− 2κνz), to illustrate the approach
of the downstream transitional form (3.9) to the large-distance Gaussian approximation (3.12) (for
ν−3 � κ� ν), as κν−1z increases. −··−··−, Gaussian approximation; ——, downstream transitional
form, for κν−1z = 1

2
, 1 and 5, in order of decreasing peak height; - - - -, skewed approximation (3.1).

against (κν3z)−1/2(∆t− 2κνz): with such a rescaling, the downstream transitional
form depends only on the parameter κν−1z, and tends towards the fully developed
Gaussian as κν−1z →∞. In figure 6 we show the transitional form for κν−1z = 1

2
, 1

and 5, together with the Gaussian. The main features of the limiting process are that
the peak becomes broader and lower, and occurs later in time, approaching ∆t = 2κνz,
while the transient as a whole becomes more symmetrical. The peak concentration
drops quite rapidly towards the Gaussian value, lying within 10% of it by about
κν−1z = 1.14, but the approach of the temporal position of the peak is more gradual.
The skewed approximation (3.1), which describes the early part of the transient, is
also shown, although its usefulness is clearly limited beyond about κν−1z = 1.

5. Discussion and applications
In this paper, we have considered the development of dispersion in a system in which

a tracer substance is exchanged between a flowing phase and a fixed phase, in which its
diffusivity is much smaller. The problem has been formulated in terms of the temporal
variation of concentration at a fixed axial position, following the initial release of
tracer at some point within the fluid. Rather than attempting to solve the governing
equations numerically, we have adopted an analytic approach based on asymptotic
approximations. This has the virtue of identifying clearly the important governing
parameters, together with the different possible regimes of behaviour and the physical
mechanisms which are dominant. The crucial assumption, necessary to allow analytic
progress to be made, is that the diffusivity within the fixed phase is sufficiently small
that diffusion across it takes much longer than diffusion across the fluid. This means
that approximate solutions for the tracer concentration may be found at distances
smaller than those required for the full development of dispersion, which eventually
produces a Gaussian concentration distribution (Golay 1958). However, the tracer is
assumed to have equilibrated within the fluid phase, which implies that the measured
concentration is insensitive to both the radial position at which it is observed, and
the initial radial distribution of tracer within the fluid.

The character of the transient is found to be governed by three dimensionless
parameters: the downstream distance z, defined in (2.5), the absorption parameter κ,
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Approximation Temporal range of validity

Taylor region

Taylor Gaussian: equation (3.8) t− z < 0 : |t− z| � min(z2/3, κ−2z−1);

t− z > 0 : t− z � min(z2/3, z1/2
∣∣ln(κz3/4)

∣∣1/2)

Intermediate region

Early part: equation (3.3) t− z < 0 : |t− z| � z2/3;
(provided that z � κ−2) t− z > 0 : t− z <∼ κz5/4

Skewed approximation: equation (3.1) max(κ2z3/2, κz5/4)� t− z � ν2

Late part: equation (3.5) κνz � t− z � κ−1ν3

Fully developed region

Golay Gaussian: equation (3.12) |t− z − 2κνz| � (κν2z)2/3 (for ν−3 � κ� ν)

Table 1. Summary of approximations and their temporal ranges of validity

and the effective wall layer thickness ν, both defined in (2.13). (Of these parameters,
z and ν are large by assumption.) In terms of (κ, z) parameter space, there exist
three regions, which are illustrated schematically in figure 1. These regions differ
according to the importance of the effect of the wall layer during the main part of
the concentration transient. In the first region shown, the wall layer has only a small
influence, so that the transient is described approximately by the Taylor Gaussian
(3.8). In the intermediate region, absorption is significant, but the presence of the outer
boundary of the wall layer has little effect. The result is the characteristic skewed
variation of concentration with time (3.1). In the third region, tracer concentration has
had time to become almost uniform over the cross-section, including the wall layer.
As a result the transient is described approximately by the Golay Gaussian (3.12).
Near the boundaries between these regions in (κ, z)-space are zones of transition,
where the integral forms (3.7), (3.9) apply.

The three simple solutions referred to above describe only the main part of the
concentration transient in each region; the precise ranges of temporal validity are
given in table 1. They are also illustrated in figure 7, where the corresponding regions
in the (t− z, z)-plane are shown schematically for two ranges of the parameter κ. In
each case, the simple approximation breaks down both near the onset of the transient
and at very large times. However, in the intermediate region of (κ, z)-space, relatively
simple approximations may also be available for the behaviour of the tail at earlier
and later times. For at least part of the parameter range (as shown in figure 7a),
the early part of the transient is described by (3.3): this behaviour is influenced both
by the slight non-uniformity of the radial tracer distribution in the fluid phase, and
by the small amount of tracer absorption by the wall layer. The later part of the
transient, in which the outer boundary of the wall layer becomes important, satisfies
(3.5).

It is useful to re-express in dimensional terms the criteria defining the intermediate
region, where the skewed approximation applies. In terms of the partition coefficient
β and the axial distance Z , the required conditions are that

Dwa
3

Dh3
� β � Dh

Dwa
, max

(
Vma

2

D
,

Vma
2

(β4DD2
w)1/3

)
� Z � Vmah

βDw
. (5.1)

Although derived in this paper for a specific flow profile and geometry, and with the
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Figure 7. Schematic illustrations of the temporal ranges of validity of the approximate solutions.
Axial distance z is plotted against the time difference ∆t = t− z, for two ranges of κ. (a) For
ν−1/3 � κ� 1, the distance–time plane is shown for 1� z � κ−1ν and ∆t� 1. (For z � κ−1ν,
the behaviour is as shown in (b) below.) The behaviour is similar for smaller values of κ: for
ν−1 � κ� ν−1/3, the boundary segment ∆t ∼ κ2z3/2 is absent; for ν−3 � κ� ν−1, the early form
(3.3) remains valid up to z ∼ κ−1ν. (b) For 1� κ� ν, the distance–time plane is shown for z � 1,
∆t� 1. (For κ� ν, the upper part of the diagram describes the behaviour over the whole range
z � 1.)

assumption of infinite Péclet number, the skewed approximation is expected to be
applicable to a range of related systems. In Appendix B it is demonstrated explicitly
that the assumptions that the Péclet number is infinite and that the wall layer is thin
are unnecessary for its validity. In fact, it is clear from the derivation that, provided
the absorption parameter κ is defined with reference to the surface area per unit
length of the pipe, it is not even necessary that the cross-section be circular: the
dimensional form of the approximation in this case is given by (B 6). Similarly, by an
appropriate definition of κ, it may also be applied to systems which are not axially
invariant, such as columns packed with permeable beads (cf. Reis et al. 1979).

Most of the other approximate solutions presented here may also be extended
to other geometries, with more or less effort. Thus, it is clear from the working of
§ 2 (leading to (2.19)) that a suitably rescaled version of the upstream transitional
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form (3.7) will be more generally applicable, provided that the coefficient of the σ2

term is fixed with reference to the dispersion coefficient which would apply in the
absence of absorption by the wall layer. Knowledge of this coefficient also allows the
early approximation analogous to (3.3) to be written down immediately. (Of course,
this dispersion coefficient may itself not be trivial to calculate.) The downstream
transitional form (3.9) may also be generalized, but a little more work is required
here, because the hyperbolic tangent is specific to the (thin) annular geometry of the
wall layer. What is required instead, following the reasoning of §§ 2, 3, is to define
a function g within the fixed phase, satisfying ∇2

rg = λ−1sg, subject to the boundary
condition g = 1 at the interface. Then in (2.12), the quantity κ′s1/2 must be replaced
by the average value, over the interface, of βλ ∂g/∂n (where ∂/∂n denotes the normal
derivative). Once this replacement function has been defined, we may deduce not
only the downstream transitional form (by numerical integration), but also the late
approximation analogous to (3.5) (by examining the singularities of the function), and
the fully developed Gaussian approximation corresponding to (3.12) (by expanding
the function for small values of s). Thus, as well as giving qualitative information
about the behaviour of similar systems, in principle each of the approximations
derived in this paper may be generalized in a precise manner.

C. G. P. is grateful to the Wellcome Trust for support from a Research Fellowship
during the course of this work.

Appendix A. Inversion of the Laplace transform in the intermediate region
In this Appendix, we give mathematical details of the derivation of the three

approximations (3.1), (3.3) and (3.5), presented in § 3.1, which describe, respectively,
the main, early and late parts of the concentration transient in the intermediate region.
Using similar arguments it may be shown that (3.3) also describes the early transient
in the upstream transition zone, and that (3.5) also describes the late transient in the
downstream transition zone (see figure 1).

We have previously considered the development of shear dispersion in a system
similar to the present one, but without an absorbing wall layer (Phillips & Kaye
1996). In this case, the exponent which appears in (2.16) has a single saddle point
on the real axis of the s-plane, whose position depends on the value of t. The saddle
point lies at s = 0 when t = z; it moves along the positive axis for smaller values
of t (tending to ∞ as t→ 1

2
z) and along the negative axis for larger values of t

(tending to −∞ as t→∞). When z is large, the integral corresponding to (2.16) may
be evaluated, at leading order, by using a quadratic approximation for the exponent
in the neighbourhood of the saddle point. In the present problem, the behaviour of
the exponent is different because, owing to the presence of the hyperbolic tangent
in the boundary condition (2.12), there is an infinite sequence of singularities on the
negative real axis, at s = − 1

4
(2m+ 1)2π2ν−2, for m = 0, 1, 2, . . .

A.1. The main part of the transient

We consider first the main part of the transient, for which ∆t is comparable with κ2z2.
The exponent varies over the scale κ−2z−2 in the s-plane, and it is convenient to use
the rescaled variable σ = κ2z2s. With this scaling, we find that all but the first two
terms of the expansion (2.19) are small compared with unity, and that the hyperbolic
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tangent may be replaced by unity. Thus we have

G(r, z, t; r0) ∼
1

2πiκ2z2

∫
C0

exp
( ∆t

κ2z2
σ − 2σ1/2

)
dσ. (A 1)

In this approximation, the exponent has a saddle point, whose position is given by

σ ∼ κ4z4

∆t2
. (A 2)

The scale on which the exponent varies along the integration contour is comparable
with the distance of the saddle point from the origin, and much larger than the spacing
of the singularities along the negative real axis. Setting the hyperbolic tangent equal
to unity is equivalent to the replacement of these singularities by a branch cut. The
integral may conveniently be evaluated by deforming the contour around the negative
real axis, and then using Gradshteyn & Ryzhik (1980, eqn 3.952.1), to obtain (3.1).

In this regime, it is easy to obtain the corresponding approximation for the con-
centration distribution within the wall layer. When r lies within the wall layer, in
the definition (2.9) of the function F0, the function f0(r; s) is given by (2.11), but the
remainder is unchanged. In the fluid phase we still have f0 ∼ 1, so that the quantity
A0(s) can be determined directly from the second boundary condition of (2.2). Fi-
nally, we note that the scaling assumptions for the intermediate region imply that the
argument of cosh in (2.11) is large, so that it can be approximated by an exponential
(except very near the outer boundary, where 1 + ε− r is asymptotically small). The
result is that the integrand in (2.8) is as for the fluid phase, but with κz replaced
by κz + 1

2
λ−1/2[r − 1]. So the integral can be evaluated in exactly the same way as

before, to give (3.2).

A.2. The early part of the transient

As ∆t becomes smaller, the position of the saddle point given by (A 2) moves to the
right along the real axis of the s-plane. Because s remains much larger than ν−2, the
hyperbolic tangent remains close to unity and, as above, κ′ may be replaced by κ
in (2.18). In the range max(κ2z, κ2/3z)� ∆t� κ2z2, we find that the position of the
saddle point continues to be described by (A 2). Moreover, the integrand in (2.16) is
significant only in a small neighbourhood of the saddle point, and a local quadratic
approximation may be used to evaluate the integral. For the more restricted range of
times max(κ2z3/2, κz5/4)� ∆t� κ2z2, this procedure gives the same approximation,
(3.1), as already obtained by deforming the integration contour around the branch
cut. At earlier times, even though the position of the saddle point is still given by
(A 2), other terms of the exponent become important.

A convenient approximate solution for earlier times, valid in part of the intermediate
region, may be obtained by making the additional assumption that z � κ−2. In this
case, the first additional term of the exponent (2.18) to become significant is the zs2

contribution, which comes in when ∆t falls to the order κz5/4. A balance is obtained
between this and the first two terms when s is of order κ2/3. With this scaling, the
saddle point is found to lie, to leading order, at s = κ2/3α2, where α satisfies the cubic
equation (3.4). Forming the Taylor expansion of the exponent, we find (using (3.4)
for some simplification) that

st− `0(s)z = −( 1
48
α4 + α)κ4/3z + 1

4
( 1

12
+ α−3)z δs2 + O(κ2z, κ2/3z δs2, κ−2/3z δs3), (A 3)

where δs denotes s− κ2/3α2, the distance from the saddle point. The dominant
contribution to the integral in (2.16) comes from small values of δs, of order z−1/2.
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With this scaling, and the assumption already made that z � κ−2, the error terms
are found to be small compared with unity. It therefore remains only to integrate
the resulting Gaussian, which gives (3.3). This approximation remains valid down to
times when ∆t is negative and |∆t| is comparable with z2/3. At this and earlier times
the zs3 term in (2.18) becomes important (as it does in the absence of the wall layer).

A.3. The late part of the transient

When ∆t rises to become comparable with ν2, the scale of variation in the s-plane
shrinks to ν−2. The hyperbolic tangent in (2.12) must be retained, and the singularities
along the negative real axis must be treated individually, as follows. Suppose that the
contour of integration is deformed, passing around the mth singularity as

s = −ξm + ηmeiθ where ξm =
(2m+ 1)2π2

4ν2
, (A 4)

for 0 6 θ < 2π and for m = 0, 1, 2, . . . As ηm → 0 this means that

κ′s1/2 ≡ κs1/2 tanh(νs1/2) = − 2κξm
νηm

e−iθ +
3κ

2ν
+ . . . . (A 5)

Under the conditions given by (A 7) below, the exponent (2.18) may therefore be
approximated by

st− `0(s)z = (−ξm + ηmeiθ)∆t+
4κzξm
νηm

e−iθ − 3κz

ν
+ . . . . (A 6)

Note that, in the intermediate region, the final term is small. However, if it is retained
here, this derivation may be applied also in the downstream transition zone (§ 3.3) for
large times.

We know that in the intermediate region, z � min(κ−1ν, ν4) (see figure 1); we must
also impose additional conditions on ηm to justify the use of the series expansions
(2.14) and (A 5), and to ensure that the higher-order terms containing κ′ are small.
Combining these conditions, we require that

κν−3z1/2 � ηm � ν−2. (A 7)

The approximation (A 6) implies that there is a local saddle point of the exponent,
on the real axis just above the singularity, at

ηm = 2

(
κzξm

ν∆t

)1/2

= (2m+ 1)π
( κz

ν3∆t

)1/2

. (A 8)

With this choice of ηm, we find that the contribution to G from the mth singularity
may be written

Bm = π−1ηme−3κz/ν−ξm∆t

∫ π

0

e2ηm∆t cos θ cos θ dθ

= (2m+ 1)π
( κz

ν3∆t

)1/2
I1

(
2(2m+ 1)π

(
κz∆t

ν3

)1/2
)

exp

(
− 3κz

ν
− (2m+ 1)2π2∆t

4ν2

)
,

(A 9)

in which I1 is a modified Bessel function of the first kind; the integral has been
evaluated using Gradshteyn & Ryzhik (1980, eqn 3.387.1). This approximation is
valid, with the argument of the modified Bessel function of order unity, when ∆t is



Developing shear dispersion with exchange between phases 217

comparable with κ−1ν3z−1, so that the radii ηm of the integration contours are of the
order κz/ν3. The resulting large-time series approximation for the concentration is
given by (3.5).

Appendix B. The validity of the skewed approximation for smaller values
of the Péclet number and in other geometries

We demonstrate that the skewed approximation remains valid, at leading order,
in the intermediate region, if the assumptions concerning the Péclet number and the
thinness of the wall layer are relaxed.

B.1. The skewed approximation when the Péclet number is finite

If we retain the axial diffusion term in (2.6) in the fluid phase (but assume that λ is
sufficiently small that it may still be neglected in the wall layer), it is straightforward
to show that the eigenvalue `0 in (2.14) is modified by the addition of a contribution

`0p = m2ps+ m3ps
3/2 + m4ps

2 + O(s5/2), (B 1)

where the coefficients mjp are given by

m2p = −4κ′2P−2,

m3p = (−4κ′ + 14
3
κ′

3)P−2 + 16κ′3P−4,

m4p = (−1 + 4κ′2 − 2599
720
κ′

4)P−2 + (24κ′2 − 91
3
κ′

4)P−4 − 80κ′4P−6.

 (B 2)

These additional terms result in a perturbation to the exponent in (2.16). In order
that the skewed approximation remain valid at leading order in the intermediate
region, we require that this perturbation be small compared with unity for values of
s comparable with κ−2z−2 (see Appendix A, §A.1). Consideration of the sizes of the
additional terms shows that the criterion for their smallness is that

P � max(z−1/2, κ−2z−3/2). (B 3)

By definition, in the intermediate region, z � max(1, κ−4/3), so that the right-hand
side of (B 3) is asymptotically small. The assumption that P is large may therefore
be relaxed considerably before the skewed approximation loses its validity in the
intermediate region.

B.2. The influence of geometry on the skewed approximation

If the assumption that ε� 1 is relaxed, the explicit expression (2.11) for fn(r; s) in
the wall layer must be replaced by

fn(r; s) = An1(s)I0

(
λ−1/2s1/2r

)
+ An2(s)K0

(
λ−1/2s1/2r

)
, (B 4)

where I0 and K0 are modified Bessel functions; the functions An1 and An2 may be
chosen to make the gradient zero at the outer boundary r = 1 + ε. In the intermediate
region, by assumption κz/ν � 1. Provided ε<∼ 1, this implies that the arguments of the
modified Bessel functions in (B 4) are large, and they may be expanded accordingly.
(If ε� 1, that is if the thickness of the wall layer is much larger than the radius
of the pipe containing the fluid, we must impose the stronger condition λ1/2κz � 1
to justify this expansion.) Using Abramowitz & Stegun (1972, equations 9.7.1–4),
and retaining the leading effect of the curvature of the wall layer, we find that the
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boundary condition (2.12) is replaced in the intermediate region by

∂fn

∂r
= −κs1/2

(
1 + 1

2
λ1/2s−1/2 + . . .

)
fn at r = 1−. (B 5)

As just discussed, λ1/2s−1/2 is small, so that this represents a small perturbation to the
exponent in (2.16).

Physically, the skewed approximation is insensitive to the thickness of the wall layer
because in the intermediate region tracer has penetrated only a small distance beyond
the interface. In addition, in this regime the tracer concentration within the fluid
phase is radially uniform. It may therefore be argued that the validity of the skewed
approximation (3.1) is not sensitive to the geometrical details of the system, and may
be expected to apply also to pipes of non-circular cross-section. In such systems,
an effective value of κ must be defined, proportional to the amount of interfacial
surface area per unit volume of fluid. In this way the skewed approximation may be
expressed, in dimensional terms, as

C(R, Z, T ) ∼ MPβD
1/2
w

2π1/2Q2

Z

∆T 3/2
exp

(
− P

2β2Dw

4Q2

Z2

∆T

)
for ∆T > 0, (B 6)

where, in addition to quantities defined in § 2, P is the perimeter of the cross-section
of the pipe, and Q is the flow rate.
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